University of Groningen Deep Colorization for Facial Gender Recognition

نویسندگان

  • Jonathan Hogervorst
  • Emmanuel Okafor
  • Marco Wiering
چکیده

Recent research suggests that colorization models have the capability of generating plausible color versions from grayscale images. In this paper, we investigate whether colorization prior to gender classification improves classification performance on the FERET grayscale face dataset. For this, we colorize the images using an existing Lab colorization model, both with and without class rebalancing, and our novel HSV colorization model without class rebalancing. Then we construct gender classification models on the grayscale and colorized datasets using a reduced GoogLeNet convolutional neural network. Several models are trained using different loss functions (cross entropy loss, hinge loss) and gradient optimization solvers (Nesterov’s Accelerated Gradient Descent, Stochastic Gradient Descent), initialized using both random and pre-trained weights. Finally, we compare the gender classification accuracies of the models when applied to the face image color variants. The best performances are obtained by models initialized using pre-trained weights, and models using colorization without class rebalancing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Colorization for Facial Gender Recognition

Recent research suggests that colorization models have the capability of generating plausible color versions from grayscale images. In this paper, we investigate whether colorization prior to gender classification improves classification performance on the FERET grayscale face dataset. For this, we colorize the images using an existing Lab colorization model, both with and without class rebalan...

متن کامل

Weighted Heterogeneous Learning for Deep Convolutional Neural Network Based Facial Image Analysis

Recognition of facial attributes such as facial point, gender, and age has been used in marketing strategies and social networking services. Marketing strategies recommend the goods, that are supposed to matches the needs of potential clients. Various social networking services based on facial recognition techniques have recently been developed that can estimate age from a facial image with a h...

متن کامل

Facial Expression Recognition Based on Structural Changes in Facial Skin

Facial expressions are the most powerful and direct means of presenting human emotions and feelings and offer a window into a persons’ state of mind. In recent years, the study of facial expression and recognition has gained prominence; as industry and services are keen on expanding on the potential advantages of facial recognition technology. As machine vision and artificial intelligence advan...

متن کامل

Early Posterior Negativity as Facial Emotion Recognition Index in Children With Attention Deficit Hyperactivity Disorder

Introduction: Studies indicate that children with Attention Deficit Hyperactivity Disorder (ADHD) have deficits in social and emotional functions. It can be hypothesized that these children have some deficits in early stages of facial emotion discrimination. Based on this hypothesis, the present study investigated neural correlates of early visual processing during emotional face recognition in...

متن کامل

Facial Expression Recognition Based on Anatomical Structure of Human Face

Automatic analysis of human facial expressions is one of the challenging problems in machine vision systems. It has many applications in human-computer interactions such as, social signal processing, social robots, deceit detection, interactive video and behavior monitoring. In this paper, we develop a new method for automatic facial expression recognition based on facial muscle anatomy and hum...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018